Tuesday 15 August 2017

Moving Average Cutoff


Resposta de Frequência do Filtro Médico de Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é Como o filtro médio móvel é FIR, a resposta de freqüência reduz-se à soma finita. Pode usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais freqüências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro não atenuado. Certas freqüências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. A trama acima foi criada pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-maome16)). (1-exp (-maomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - University of California, Berkeley. Filtro digital fácil de usar. A média móvel exponencial (EMA) é um tipo de filtro de resposta de impulso infinito (IIR) que pode Ser usado em muitas aplicações DSP incorporadas. Requer apenas uma pequena quantidade de RAM e poder de computação. O que é um Filter Filters vem em formas analógicas e digitais e existe para remover freqüências específicas de um sinal. Um filtro analógico comum é o filtro RC de baixa passagem mostrado abaixo. Os filtros analógicos são caracterizados pela resposta de freqüência que é o quanto as freqüências são atenuadas (resposta de magnitude) e deslocadas (resposta de fase). A resposta de freqüência pode ser analisada usando uma transformada de Laplace que define uma função de transferência no domínio S. Para o circuito acima, a função de transferência é dada por: Para R equivale a um quilo-ohm e C é igual a um microfarad, a resposta de magnitude é mostrada abaixo. Observe que o eixo dos x é logarítmico (cada marca é 10 vezes maior do que a última). O eixo y está em decibéis (que é uma função logarítmica da saída). A freqüência de corte para este filtro é de 1000 rads ou 160 Hz. Este é o ponto em que menos de metade do poder em uma determinada freqüência é transferida da entrada para a saída do filtro. Os filtros analógicos devem ser usados ​​em projetos embutidos quando se mora um sinal usando um conversor analógico para digital (ADC). O ADC apenas captura freqüências que são até metade da freqüência de amostragem. Por exemplo, se o ADC adquire 320 amostras por segundo, o filtro acima (com uma freqüência de corte de 160Hz) é colocado entre o sinal ea entrada ADC para evitar aliasing (que é um fenômeno onde as freqüências mais altas aparecem no sinal amostrado como Frequências mais baixas). Filtros digitais Os filtros digitais atenuam as freqüências em software em vez de usar componentes analógicos. Sua implementação inclui amostragem dos sinais analógicos com um ADC, em seguida, aplicando um algoritmo de software. Duas abordagens de design comuns para filtragem digital são filtros FIR e filtros IIR. Filtros FIR Filtros finitos de resposta a impulsos (FIR) usam um número finito de amostras para gerar a saída. Uma média móvel simples é um exemplo de um filtro FIR de baixa passagem. As freqüências mais altas são atenuadas porque a média suaviza o sinal. O filtro é finito porque a saída do filtro é determinada por um número finito de amostras de entrada. Como exemplo, um filtro de média móvel de 12 pontos acrescenta as 12 amostras mais recentes, em seguida, divide-se por 12. A saída dos filtros IIR é determinada por (até) um número infinito de amostras de entrada. Filtros IIR Os filtros Infinite Impulse Response (IIR) são um tipo de filtro digital onde a saída é inifinetelyin teoria de qualquer forma influenciada por uma entrada. A média móvel exponencial é um exemplo de um filtro IIR de passagem baixa. Filtro médio de movimentação exponencial Uma média móvel exponencial (EMA) aplica pesos exponenciais a cada amostra para calcular uma média. Embora isso pareça complicado, a equação conhecida em linguagem de filtragem digital como a equação de diferença para calcular a saída é simples. Na equação abaixo, y é a saída x é a entrada e alfa é uma constante que define a freqüência de corte. Para analisar como esse filtro afeta a freqüência da saída, a função de transferência do domínio Z é usada. A resposta de magnitude é mostrada abaixo para alfa igual a 0,5. O eixo dos e é, novamente, mostrado em decibéis. O eixo dos x é logarítmico de 0,001 a pi. A freqüência do mundo real se correlaciona com o eixo x, sendo zero a tensão CC e pi igual a metade da frequência de amostragem. Todas as frequências que são superiores à metade da frequência de amostragem serão alias. Como mencionado, um filtro analógico pode garantir que praticamente todas as freqüências no sinal digital estão abaixo da metade da freqüência de amostragem. O filtro EMA é benéfico em projetos incorporados por dois motivos. Primeiro, é fácil ajustar a freqüência de corte. Diminuir o valor do alfa diminuirá a frequência de corte do filtro como ilustrado pela comparação do gráfico alfa 0.5 acima com o gráfico abaixo, onde alfa 0.1. Em segundo lugar, o EMA é fácil de codificar e requer apenas uma pequena quantidade de energia e memória informática. A implementação do código do filtro usa a equação de diferença. Existem duas operações de múltiplas operações e uma operação de adição para cada saída. Isso ignora as operações necessárias para arredondar matemática de ponto fixo. Somente a amostra mais recente deve ser armazenada na RAM. Isto é substancialmente menor do que o uso de um filtro de média móvel simples com N pontos que requer N operações de multiplicação e adição, bem como N amostras a serem armazenadas na RAM. O código a seguir implementa o filtro EMA usando matemática de ponto fixo de 32 bits. O código abaixo é um exemplo de como usar a função acima. Os filtros de conclusão, tanto analógicos como digitais, são uma parte essencial dos projetos incorporados. Eles permitem aos desenvolvedores se livrar de freqüências indesejadas ao analisar a entrada do sensor. Para que os filtros digitais sejam úteis, os filtros analógicos devem remover todas as frequências acima da metade da frequência de amostragem. Os filtros digitais IIR podem ser ferramentas poderosas no design incorporado, onde os recursos são limitados. A média móvel exponencial (EMA) é um exemplo desse filtro que funciona bem em projetos incorporados por causa da baixa memória e requisitos de energia de computação.

No comments:

Post a Comment